AgentGraph: Trace-to-Graph Platform for Interactive Analysis and Robustness
Testing in Agentic AI Systems

Zekun Wu'?, Seonglae Cho'?, Cristian Munoz !, Theo King!, Umar Mohammed’,
Emre Kazim', Maria Perez-Ortiz>*, Sahan Bulathwela®*, Adriano Koshiyama'~*

"Holistic AI >Centre for Artificial Intelligence, University College London
*Corresponding authors

Abstract

Modern Agentic Al systems plan, reason, and act across mul-
tiple steps, creating execution patterns that are difficult to in-
terpret. Existing observability platforms track prompt I/O and
operational metrics but require manual inspection of traces
to reconstruct structure and reasoning. We present Agent-
Graph, which converts execution logs into interactive knowl-
edge graphs and actionable insights. Nodes represent agents,
tasks, tools, data inputs/outputs, and humans, while typed
edges capture relations such as inputs consumed, tasks dele-
gated or sequenced, tools required or used, outputs produced
and delivered, and interventions from agents or humans. Each
graph element links to its exact trace span, ensuring verifi-
ability. Building on this representation, AgentGraph enables
two analyses: qualitative trace-grounded failure detection and
optimisation recommendations, and quantitative robustness
evaluation via perturbation testing and causal attribution.

Live Demo: huggingface.co/spaces/holistic-ai/AgentGraph
Demo Video: youtu.be/btrS9pfDYJY 7si=dDX4tls-0S202d2p

Introduction and Related Work

Modern Agentic Al systems have evolved from simple
question-answering systems to entities that plan, reason, and
execute multi-step workflows across multiple tools, adapt-
ing strategies based on intermediate results. This complex-
ity creates an observability problem: existing platforms track
operational metrics (e.g., prompt I/O, token usage, latency,
cost) but require manual inspection of lengthy traces to ex-
plain decisions or failures. Such reliance is unscalable in
production, where developers face difficulty diagnosing er-
rors, risk officers cannot audit decision-making, and regula-
tors lack means to verify compliance. Research highlights
both the rising complexity of multi-agent systems (Weng
2023; Barua 2024) and the fragmentation of observability
frameworks. For example, OpenTelemetry (OpenTelemetry
Community 2024) standardises trace and metric collection
but does not capture the semantic structure of reasoning
(Han et al. 2024). Existing monitoring approaches further
struggle with emergent behaviours (Malfa et al. 2025), pro-
vide limited accuracy in failure attribution (Zhang et al.
2025), and cannot mitigate bias amplification (Mirza et al.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2025; Wang et al. 2024) or hallucination cascades (Liang
et al. 2024). Several graph-based tools visualise agent be-
haviour, including observability platforms (LangFuse (Klin-
gen, Deichmann, and Rawert 2024)), development environ-
ments (LangGraph Studio (LangChain 2024)), and SDK
frameworks (OpenAl Agents SDK (OpenAl 2024)). How-
ever, these remain framework-specific, model only simple
relations, and lack behavioural analysis such as failure de-
tection or optimisation. Academic work like SentinelAgent
(He et al. 2025) applies graph-based anomaly detection, but
monitoring is reactive and offers little explanatory insight.
AgentGraph addresses these limitations by converting exe-
cution traces into interpretable knowledge graphs that enable
both explanatory analysis and actionable recommendations.

System Description

AgentGraph operates through a unified pipeline that trans-
forms raw agent execution data into interpretable graphs
and actionable insights. The system is built with FastAPI
(Ramirez 2024) backend, React (Meta and Inc. 2024) fron-
tend, and SQLite database, leveraging OpenAl structured
outputs for schema-constrained graph extraction with chain-
of-thought (CoT) reasoning; DoWhy (Sharma and Kiciman
2020) for causal analysis; and adapted LangChain (Chase
and Inc. 2024) chunkers for customised text segmentation.
Cytoscape.js (Franz et al. 2024) provides graph visualisa-
tion and LiteLLM (BerriAl and Team 2023) handles wide
range of LLM integration, with external connectivity sup-
porting LangSmith (Chase, Gola, and Inc. 2024) and Lang-
Fuse (Klingen, Deichmann, and Rawert 2024) for automated
trace import (Figure 1(C)). The system is containerised us-
ing a dual-container Docker architecture and deployed on
Hugging Face Spaces for public accessibility.
Trace-to-Graph Conversion. AgentGraph transforms
execution logs into interactive graph visual representations,
as shown in Figure 1(B). Rather than scrolling through raw
traces, users see the decision-making process as a knowl-
edge graph , making complex agent systems understand-
able. The pipeline begins by converting raw traces into struc-
tured knowledge graphs. For lengthy execution traces, the
default chunker applies adaptive semantic windows with
configurable overlap; each window is processed indepen-
dently to extract a local subgraph and supports temporal
replay. After per-window extraction and validation, a hi-

O Security Tests (2)

© Security &Bias Test Results &

0032 ... -~

Figure 1: Composite demo storyline. Panels A—E: (A) Dashboard overview with trace statistics and failure distributions. (B)
Knowledge graph with linked trace view — click a node/edge/failure/recommendation, then press Trace to jump to the exact,
highlighted lines that justify it (supports verification and reduces hallucination risk). (C) Platform connections to import traces
from LangSmith/LangFuse. (D) Perturbation testing (e.g., jailbreak) on reconstructed prompts with safety scores. (E) Causal
attribution highlighting components that drive behavioural changes.

erarchical merge reconciles overlaps, deduplicating enti-
ties and relations while preserving stable line-number ref-
erences. By default, extraction combines a lightweight rule-
based preprocessor to remove noisy data with a schema-
constrained LLM (OpenAl structured outputs to a Pydan-
tic KnowledgeGraph) that produce graph after CoT rea-
soning steps. All outputs are validated by a Graph Structure
Validator that enforces the predefined types constraints.

Node and Relation Schema. AgentGraph defines a fixed
set of node types: agent, task, tool, input, output,
and human. Relations between them capture execution
logic and prompt-grounding requirements. For example,
consumed by links an input to the agent that consumes it,
while performs and assigned_to capture how agents
execute or are delegated tasks. Tools are integrated through
uses (agent—tool) and required by (tool—task).
Task structure and flow are expressed by subtask of
for hierarchical decomposition and next for sequen-
tial ordering. Outputs are represented with produces
(task—output) and delivers to (output—human). Fi-
nally, intervenes records instances where an agent or
human provides feedback or correction on a task. Similar
schema are established like PROV-O (Moreau 2013).

Failure and Optimization Detection. As shown on
the graph (Figure 1(B)),s AgentGraph identifies problems
across five risk categories: agent_error (reasoning
failures or incorrect decisions), planning_error
(task decomposition or workflow design issues),
execution_error (runtime or process interruptions),
retrieval_error (data access or knowledge base
failures), and hallucination (fabricated or inaccurate
content). The system then generates actionable optimization

in five areas: prompt_refinement (clarifying vague or
complex instructions), agent_merging (consolidating
overlapping roles), task_consolidation (combining
redundant steps), tool_enhancement (improving or re-
placing fragile tools), and workflow_simplification
(removing unnecessary complexity).

Reference-Based Traceability. Every graph element, in-
cluding entities, relations, failures, and optimization, is
linked to the exact lines of the original trace that substanti-
ate it. When traces are ingested, the system normalises them
and assigns stable line numbers (e.g., L1, L2) for extractor
to locate. In the U, a Trace button opens those lines in the
right pane (highlighted), so users can verify any item with-
out leaving the view. This supports verification and reduces
LLM-extraction hallucination risk by letting users check that
all detected elements are grounded in the original lines.

Perturbation Testing and Causal Analysis. Beyond
qualitative analysis, AgentGraph provides quantitative ro-
bustness evaluation on reconstructed, relation-level prompts.
From any per-trace page, users click Process to launch
two test families (Figure 1(D)): (i) jailbreak attempts
drawn from a curated public suite (covering DAN-style
personas, mode toggles, safety-filter overrides, and con-
trarian prompts); and (ii) counterfactual fairness tests that
compare matched demographic variants (e.g., gender (x)
race). Tests are model-agnostic and configurable (target
model, judge model, selection of relations). Outcomes are
saved per relation and summarised into a single perturba-
tion score for comparison across runs. The causal module
then consumes these outcomes and attributes behavioural
changes to components (entities, tools, relations), surfacing
the highest-impact drivers to prioritise fixes (Figure 1(E)).

References

Barua, S. 2024. Exploring Autonomous Agents through the
Lens of Large Language Models: A Review. https://arxiv.
org/abs/2404.04442. ArXiv preprint arXiv:2404.04442.

BerriAl; and Team, L. D. 2023. LiteLLM: Unified Interface
for 100+ LLMs. https://github.com/BerriAl/litellm. Python
library providing unified interface for calling 100+ LLM
APIs in OpenAl format. Accessed: 2025-01-15.

Chase, H.; Gola, A.; and Inc., L. 2024. LangSmith: Tracing
and Evaluating Language Model Applications. https://smith.
langchain.com. Platform for debugging, testing, evaluating
and monitoring LLM applications. Accessed: 2025-01-15.

Chase, H.; and Inc., L. 2024. LangChain: Framework for
Developing Applications Powered by Language Models.
https://langchain.com. Framework providing modular com-
ponents for building LLM applications including text split-
ters and chunkers. Accessed: 2025-01-15.

Franz, M.; Lopes, C. T.; Bader, G.; and Consortium, C.
2024. Cytoscape.js: Graph Theory Library for Visualisation
and Analysis. https://cytoscape.org. JavaScript graph library
for network visualization and analysis. Accessed: 2025-01-
15.

Han, S.; Zhang, Q.; Yao, Y.; Jin, W.; Xu, Z.; and He, C.
2024. LLM Multi-Agent Systems: Challenges and Open
Problems. https://arxiv.org/abs/2402.03578. ArXiv preprint
arXiv:2402.03578.

He, X.; Wu, D.; Zhai, Y.; and Sun, K. 2025. SentinelA-
gent: Graph-based Anomaly Detection in Multi-Agent Sys-
tems. https://arxiv.org/abs/2505.24201. ArXiv preprint
arXiv:2505.24201.

Klingen, M.; Deichmann, M.; and Rawert, C. 2024. Lang-
Fuse: Open Source LLM Engineering Platform. https:/
langfuse.com. Open-source LLM engineering platform with
comprehensive tracing solutions. Accessed: 2025-01-15.

LangChain. 2024. LangGraph Studio: Interactive Agent
IDE. https://langchain-ai.github.io/langgraph/concepts/
langgraph_studio/. Specialized agent IDE for visualizing,
interacting with, and debugging complex agent applications
built on LangGraph framework. Accessed: 2025-01-15.
Liang, M.; Arun, A.; Wu, Z.; Munoz, C.; Lutch, J.; Kazim,
E.; Koshiyama, A.; and Treleaven, P. 2024. THaMES:
An End-to-End Tool for Hallucination Mitigation and
Evaluation in Large Language Models. arXiv preprint
arXiv:2409.11353. NeurIPS 2024 SoLaR Workshop.

Malfa, E. L.; Malfa, G. L.; Marro, S.; Zhang, J. M.; Black,
E.; Luck, M.; Torr, P.; and Wooldridge, M. 2025. Large Lan-
guage Models Miss the Multi-Agent Mark. https://arxiv.org/
abs/2505.21298. ArXiv preprint arXiv:2505.21298v2.

Meta; and Inc., F. 2024. React: A JavaScript Library for
Building User Interfaces. https://react.dev. JavaScript li-
brary for building user interfaces with component-based ar-
chitecture. Accessed: 2025-01-15.

Mirza, 1.; Huang, C.; Vasista, 1.; Patil, R.; Akalin, A.;
O’Brien, S.; and Zhu, K. 2025. MALIBU Benchmark:
Multi-Agent LLM Implicit Bias Uncovered. https://arxiv.
org/abs/2507.01019. ArXiv preprint arXiv:2507.01019.

Moreau. 2013. The PROV data model and its applications.
Communications of the ACM, 57(6): 83-91.

OpenAl. 2024. OpenAl Agents SDK: Agent Visu-
alization. https://openai.github.io/openai-agents-python/
visualization/. OpenAl Agents SDK with Graphviz-based
structural visualization for agent-tool relationships. Ac-
cessed: 2025-01-15.

OpenTelemetry Community. 2024. OpenTelemetry: Ob-
servability Framework for Cloud-Native Software. https:
/lopentelemetry.io. Open-source observability framework
providing standardized APIs and SDKs for telemetry data
collection (traces, metrics, logs) across multiple program-
ming languages. Accessed: 2025-01-15.

Ramirez, S. 2024. FastAPI: Modern, Fast Web Framework
for Building APIs with Python. https://fastapi.tiangolo.com.
High-performance web framework for building APIs with
Python based on standard Python type hints. Accessed:
2025-01-15.

Sharma, A.; and Kiciman, E. 2020. DoWhy: An End-
to-End Library for Causal Inference. arXiv preprint
arXiv:2011.04216. ArXiv preprint arXiv:2011.04216.
Wang, Z.; Wu, Z.; Zhang, J.; Guan, X.; Jain, N.; Lu, S.;
Gupta, S.; and Koshiyama, A. 2024. Bias Amplifica-
tion: Large Language Models as Increasingly Biased Media.
arXiv preprint arXiv:2410.15234. Submitted to EMNLP
2025 Industry Track.

Weng, L. 2023. LLM-powered Autonomous Agents. https:
/Nilianweng.github.io/posts/2023-06-23-agent/. Accessed:
2025-01-15.

Zhang, S.; Yin, M.; Zhang, J.; Liu, J.; Han, Z.; Zhang, J.; Li,
B.; Wang, C.; Wang, H.; Chen, Y.; and Wu, Q. 2025. Which
Agent Causes Task Failures and When? On Automated Fail-
ure Attribution of LLM Multi-Agent Systems. https://arxiv.
org/abs/2505.00212. ArXiv preprint arXiv:2505.00212.

